Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
Article in English | MEDLINE | ID: mdl-38621408

ABSTRACT

BACKGROUND: Early life is a key period that determines long-term health. Lung development in childhood predicts lung function attained in adulthood and morbidity and mortality across the life course. We aimed to assess the effect of early-life lower respiratory tract infection (LRTI) and associated risk factors on lung development from birth to school age in a South African birth cohort. METHODS: We prospectively followed children enrolled in a population-based cohort from birth (between March 5, 2012 and March 31, 2015) to age 5 years with annual lung function assessment. Data on multiple early-life exposures, including LRTI, were collected. The effect of early-life risk factors on lung function development from birth to age 5 years was assessed using the Generalised Additive Models for Location, Scale and Shape and Interrupted Time Series approach. FINDINGS: 966 children (475 [49·2%] female, 491 [50·8%] male) had lung function measured with oscillometry, tidal flow volume loops, and multiple breath washout. LRTI occurred in 484 (50·1%) children, with a median of 2·0 LRTI episodes (IQR 1·0-3·0) per child. LRTI was independently associated with altered lung function, as evidenced by lower compliance (0·959 [95% CI 0·941-0·978]), higher resistance (1·028 [1·016-1·041]), and higher respiratory rate (1·018 [1·063-1·029]) over 5 years. Additional impact on lung function parameters occurred with each subsequent LRTI. Respiratory syncytial virus (RSV) LRTI was associated with lower expiratory flow ratio (0·97 [0·95-0·99]) compared with non-RSV LRTI. Maternal factors including allergy, smoking, and HIV infection were also associated with altered lung development, as was preterm birth, low birthweight, female sex, and coming from a less wealthy household. INTERPRETATION: Public health interventions targeting LRTI prevention, with RSV a priority, are vital, particularly in low-income and middle-income settings. FUNDING: UK Medical Research Council Grant, The Wellcome Trust, The Bill & Melinda Gates Foundation, US National Institutes of Health Human Heredity and Health in Africa, South African Medical Research Council, Hungarian Scientific Research Fund, and European Respiratory Society.

2.
Respirology ; 29(4): 295-303, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219238

ABSTRACT

BACKGROUND AND OBJECTIVE: Chronic, low-intensity air pollution exposure has been consistently associated with reduced lung function throughout childhood. However, there is limited research regarding the implications of acute, high-intensity air pollution exposure. We aimed to determine whether there were any associations between early life exposure to such an episode and lung growth trajectories. METHODS: We conducted a prospective cohort study of children who lived in the vicinity of the Hazelwood coalmine fire. Lung function was measured using respiratory oscillometry. Z-scores were calculated for resistance (R5 ) and reactance at 5 Hz (X5 ) and area under the reactance curve (AX). Two sets of analyses were conducted: (i) linear regression to assess the cross-sectional relationship between post-natal exposure to mine fire-related particulate matter with an aerodynamic diameter of less than 2.5 micrometres (PM2.5 ) and lung function at the 7-year follow-up and (ii) linear mixed-effects models to determine whether there was any association between exposure and changes in lung function between the 3- and 7-year follow-ups. RESULTS: There were no associations between mine fire-related PM2.5 and any of the lung function measures, 7-years later. There were moderate improvements in X5 (ß: -0.37 [-0.64, -0.10] p = 0.009) and AX (ß: -0.40 [-0.72, -0.08] p = 0.014), between the 3- and 7-year follow-ups that were associated with mean PM2.5 , in the unadjusted and covariance-adjusted models. Similar trends were observed with maximum PM2.5 . CONCLUSION: There was a moderate improvement in lung stiffness of children exposed to PM2.5 from a local coalmine fire in infancy, consistent with an early deficit in lung function at 3-years after the fire that had resolved by 7-years.


Subject(s)
Air Pollutants , Air Pollution , Child , Humans , Smoke/adverse effects , Air Pollutants/analysis , Prospective Studies , Particulate Matter/adverse effects , Particulate Matter/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Lung , Environmental Exposure/adverse effects
3.
Pediatr Pulmonol ; 58(11): 3122-3132, 2023 11.
Article in English | MEDLINE | ID: mdl-37539845

ABSTRACT

INTRODUCTION: The European Respiratory Society Oscillometry Taskforce identified that clinical correlates of bronchodilator responses are needed to advance oscillometry in clinical practice. The understanding of bronchodilator-induced oscillometry changes in preterm lung disease is poor. Here we describe a comparison of bronchodilator assessments performed using oscillometry and spirometry in a population born very preterm and explore the relationship between bronchodilator-induced changes in respiratory function and clinical outcomes. METHODS: Participants aged 6-23 born ≤32 (N = 288; 132 with bronchopulmonary dysplasia) and ≥37 weeks' gestation (N = 76, term-born controls) performed spirometry and oscillometry. A significant bronchodilator response (BDR) to 400 µg salbutamol was classified according to published criteria. RESULTS: A BDR was identified in 30.9% (n = 85) of preterm-born individuals via spirometry and/or oscillometry, with poor agreement between spirometry and oscillometry definitions (k = 0.26; 95% confidence interval [CI] 0.18-0.40, p < .001). Those born preterm with a BDR by oscillometry but not spirometry had increased wheeze (33% vs. 11%, p = .010) and baseline resistance (Rrs5 z-score mean difference (MD) = 0.86, 95% CI 0.07-1.65, p = .025), but similar baseline spirometry to the group without a BDR (forced expiratory volume in 1 s [FEV1 ] z-score MD = -0.01, 95% CI -0.66 to 0.68, p > .999). Oscillometry was more feasible than spirometry (95% success rate vs. 85% (FEV1 ), 69% (forced vital capacity) success rate, p < .001), however being born preterm did not affect test feasibility. CONCLUSION: In the preterm population, oscillometry is a feasible and clinically useful supportive test to assess the airway response to inhaled salbutamol. Changes measured by oscillometry reflect related but distinct physiological changes to those measured by spirometry, and thus these tests should not be used interchangeably.


Subject(s)
Albuterol , Bronchodilator Agents , Infant, Newborn , Humans , Child , Young Adult , Oscillometry , Spirometry , Respiratory Function Tests , Forced Expiratory Volume/physiology , Lung
4.
BMC Pediatr ; 23(1): 386, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37543578

ABSTRACT

BACKGROUND: Inflammation and oxidative stress play a key role in the development of bronchopulmonary dysplasia (BPD), possibly contributing to persistent respiratory morbidity after preterm birth. We aimed to assess if inflammatory markers were elevated in exhaled breath condensate (EBC) of infants born very prematurely (< 32 weeks gestation) at 12-16 corrected months of age, and if increased levels were associated with BPD diagnosis and respiratory morbidity. METHODS: EBC samples and respiratory questionnaires were collected from 15 term-born infants and 33 preterm-born infants, 12 with a neonatal BPD diagnosis. EBC samples were analysed for leukotriene B4 (inflammation) and 8-isoprostane (oxidative stress) concentrations using enzyme-linked immune-assays. Differences between groups were analysed by Kruskal-Wallis Test with post-hoc comparisons, independent samples t-test or Mann-Whitney U test depending on normality of the data. RESULTS: Leukotriene B4 and 8-isoprostane levels were elevated in exhaled breath condensate of preterm-born infants compared to those born at term (mean difference [95% CI]; 1.52 [0.45, 2.59], p = 0.02; 0.77 [0.52, 1.02], p < 0.001, respectively). Leukotriene B4 and 8-isoprostane levels were independent of BPD diagnosis and respiratory morbidity over the first year of life. CONCLUSIONS: Infants born very prematurely exhibit elevated markers of airway neutrophilic inflammation and oxidative stress beyond the first year of life, regardless of a neonatal diagnosis of chronic lung disease or respiratory morbidity during infancy. These findings may have implications for future lung health. TRIAL REGISTRATION: N/A.


Subject(s)
Bronchopulmonary Dysplasia , Premature Birth , Female , Humans , Infant, Newborn , Infant , Leukotriene B4/analysis , Infant, Premature , Bronchopulmonary Dysplasia/diagnosis , Inflammation , Breath Tests
5.
Thorax ; 78(12): 1223-1232, 2023 12.
Article in English | MEDLINE | ID: mdl-37208189

ABSTRACT

RATIONALE: The respiratory outcomes for adult survivors of preterm birth in the postsurfactant era are wide-ranging with prognostic factors, especially those encountered after the neonatal period, poorly understood. OBJECTIVES: To obtain comprehensive 'peak' lung health data from survivors of very preterm birth and identify neonatal and life-course risk factors for poorer respiratory outcomes in adulthood. METHODS: 127 participants born ≤32 weeks gestation (64%, n=81 with bronchopulmonary dysplasia (BPD), initially recruited according to a 2 with-BPD:1 without-BPD strategy), and 41 term-born controls completed a lung health assessment at 16-23 years, including lung function, imaging and symptom review. Risk factors assessed against poor lung health included neonatal treatments, respiratory hospitalisation in childhood, atopy and tobacco smoke exposure. MEASUREMENTS AND MAIN RESULTS: Young adults born prematurely had greater airflow obstruction, gas trapping and ventilation inhomogeneity, in addition to abnormalities in gas transfer and respiratory mechanics, compared with term. Beyond lung function, we observed greater structural abnormalities, respiratory symptoms and inhaled medication use. A previous respiratory admission was associated with airway obstruction; mean forced expiratory volume in 1 s/forced vital capacity z-score was -0.561 lower after neonatal confounders were accounted for (95% CI -0.998 to -0.125; p=0.012). Similarly, respiratory symptom burden was increased in the preterm group with a respiratory admission, as was peribronchial thickening (6% vs 23%, p=0.010) and bronchodilator responsiveness (17% vs 35%, p=0.025). Atopy, maternal asthma and tobacco smoke exposure did not influence lung function or structure at 16-23 years in our preterm cohort. CONCLUSIONS: Even after accounting for the neonatal course, a respiratory admission during childhood remained significantly associated with reduced peak lung function in the preterm-born cohort, with the largest difference seen in those with BPD. A respiratory admission during childhood should, therefore, be considered a risk factor for long-term respiratory morbidity in those born preterm, especially for individuals with BPD.


Subject(s)
Bronchopulmonary Dysplasia , Premature Birth , Tobacco Smoke Pollution , Female , Humans , Infant, Newborn , Young Adult , Adolescent , Lung , Forced Expiratory Volume
6.
BMC Pulm Med ; 23(1): 120, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37059986

ABSTRACT

BACKGROUND AND OBJECTIVE: Studies linking early life exposure to air pollution and subsequent impaired lung health have focused on chronic, low-level exposures in urban settings. We aimed to determine whether in utero exposure to an acute, high-intensity air pollution episode impaired lung function 7-years later. METHOD: We conducted a prospective cohort study of children who lived in the vicinity of a coalmine fire. Respiratory function was measured using the forced oscillation technique (FOT). Z-scores for resistance at 5 Hz (R5), reactance at 5 Hz (X5) and area under the reactance curve (AX) were calculated. Two sets of analyses were conducted to address two separate questions: (1) whether mine fire exposure (a binary indicator; conceived after the mine fire vs in utero exposed) was associated with the respiratory Z-scores; (2) whether there was any dose-response relationship between fire-related PM2.5 exposure and respiratory outcomes among those exposed. RESULTS: Acceptable lung function measurements were obtained from 79 children; 25 unexposed and 54 exposed in utero. Median (interquartile range) for daily average and peak PM2.5 for the exposed children were 4.2 (2.6 - 14.2) and 88 (52-225) µg/m3 respectively. There were no detectable differences in Z-scores between unexposed and exposed children. There were no associations between respiratory Z-scores and in utero exposure to PM2.5 (daily average or peak). CONCLUSION: There was no detectable effect of in utero exposure to PM2.5 from a local coalmine fire on post-natal lung function 7-years later. However, statistical power was limited.


Subject(s)
Air Pollutants , Air Pollution , Child , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/analysis , Prospective Studies , Environmental Exposure/adverse effects , Air Pollution/adverse effects , Lung , Respiration
7.
Dev Med Child Neurol ; 65(5): 664-673, 2023 05.
Article in English | MEDLINE | ID: mdl-36303274

ABSTRACT

AIM: This study explored how children and adolescents with a neuromuscular disorder (NMD) and their parents experienced barriers and enablers to the child's participation. METHOD: This was a qualitative descriptive design. Fourteen semi-structured interviews were conducted (n = 13 mothers, n = 4 fathers, n = 8 children and adolescents) including one to three family members for each interview according to their preference. Data were analysed by content analysis, using the family of Participation-Related Constructs (fPRC), to characterize the components of participation. RESULTS: Meaningful participation was illustrated in the personal categories of the fPRC including the child's sense of self, preferences, and competence to perform activities. Enablers and barriers related to adaptive equipment and activity modification, social relationships, inclusion, accessibility to venues, social attitudes, and policies. INTERPRETATION: Personal motivators are critical to understanding what participation is meaningful to children and adolescents with NMDs. Social and physical supports within the child's immediate environment as well as accessibility and advocacy more widely in the community enable participation. The fPRC is a useful tool for understanding participation in these children; it informs how to support participation and suggests domains for evaluation in future intervention studies. Advocacy for participation should consider targets in the immediate and broader environments. WHAT THIS PAPER ADDS: The family of Participation-Related Constructs classified the components of participation for children and adolescents with neuromuscular disorders. Meaningful participation involved a complex interaction between personal and environmental factors. Barriers to participation included poor accessibility, lack of equipment, and social exclusion.


Subject(s)
Disabled Children , Female , Child , Humans , Adolescent , Parents , Qualitative Research , Mothers , Schools
8.
Respirology ; 28(3): 236-246, 2023 03.
Article in English | MEDLINE | ID: mdl-36184579

ABSTRACT

BACKGROUND AND OBJECTIVE: Environmental exposure to phthalates and bisphenol A (BPA), chemicals used in the production of plastics, may increase risk for asthma and allergies. However, little is known about the long-term effects of early life exposure to these compounds. We investigated if prenatal exposure to these compounds was associated with asthma, allergy and lung function outcomes from early childhood into adulthood in a cohort study. METHODS: Maternal serum samples collected from 846 pregnant women in the Raine Study were assayed for BPA and phthalate metabolites. The children of these women were followed up at 5, 13 and 22 years where spirometry and respiratory questionnaires were conducted to determine asthma and allergy status. Lung function trajectories were derived from longitudinal spirometry measurements. Multinomial logistic regression and weighted quantile sum regression was used to test associations of individual and chemical mixtures with asthma phenotypes and lung function trajectories. RESULTS: Effects of prenatal BPA and phthalates on asthma phenotypes were seen in male offspring, where BPA was associated with increased risk for persistent asthma, while mono-iso-butyl phthalate and mono-iso-decyl phthalate was associated with increased risk for adult asthma. Prenatal BPA had no effect on lung function trajectories, but prenatal phthalate exposure was associated with improved lung function. CONCLUSION: Prenatal BPA exposure was associated with increased likelihood of persistent asthma in males, while prenatal phthalate exposure was associated with increased likelihood of adult asthma in males. Results suggest that prenatal exposure to prenatal BPA and phthalates affect asthma risk, particularly in males, however lung function was not adversely affected.


Subject(s)
Asthma , Hypersensitivity , Prenatal Exposure Delayed Effects , Male , Humans , Child, Preschool , Female , Pregnancy , Cohort Studies , Prenatal Exposure Delayed Effects/epidemiology , Prenatal Exposure Delayed Effects/chemically induced , Environmental Exposure/adverse effects , Asthma/chemically induced , Asthma/epidemiology , Benzhydryl Compounds/adverse effects , Benzhydryl Compounds/metabolism , Lung/metabolism , Maternal Exposure/adverse effects
9.
Front Pediatr ; 10: 974643, 2022.
Article in English | MEDLINE | ID: mdl-36389388

ABSTRACT

Background: Preterm birth and subsequent neonatal ventilatory treatment disrupts development of the hypoxic ventilatory response (HVR). An attenuated HVR has been identified in preterm neonates, however it is unknown whether the attenuation persists into the second year of life. We investigated the HVR at 12-15 months corrected postnatal age and assessed predictors of a blunted HVR in those born very preterm (<32 weeks gestation). Methods: HVR was measured in infants born very preterm. Hypoxia was induced with a three-step reduction in their fraction of inspired oxygen (FIO2) from 0.21 to 0.14. Respiratory frequency (f), tidal volume (V T), minute ventilation (V E), inspiratory time (t I), expiratory time (t E), V T/t I, tI/t TOT, V T/t TOT, area under the low-volume loop and peak tidal expiratory flow (PTEF) were measured at the first and third minute of each FIO2. The change in respiratory variables over time was assessed using a repeated measures ANOVA with Greenhouse-Geisser correction. A blunted HVR was defined as a <10% rise in V E, from normoxia. The relationship between neonatal factors and the magnitude of HVR was assessed using Spearman correlation. Results: Thirty nine infants born very preterm demonstrated a mean (SD) HVR of 11.4 (10.1)% (increase in V E) in response to decreasing FIO2 from 0.21 to 0.14. However, 17 infants (44%) failed to increase V E by ≥10% (range -14% to 9%) and were considered to have a blunted response to hypoxia. Males had a smaller HVR than females [ΔV E (-9.1%; -15.4, -2.8; p = 0.007)]. Conclusion: Infants surviving very preterm birth have an attenuated ventilatory response to hypoxia that persists into the second year of life, especially in males.

10.
JAMA Netw Open ; 5(10): e2234714, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36201211

ABSTRACT

Importance: Despite advances in asthma therapeutics, the burden remains highest in preschool children; therefore, it is critical to identify primary care tools that distinguish preschool children at high risk for burdensome disease for further evaluation. Current asthma prediction tools, such as the modified Asthma Predictive Index (mAPI), require invasive tests, limiting their applicability in primary care and low-resource settings. Objective: To develop and evaluate the use of a symptom-based screening tool to detect children at high risk of asthma, persistent wheeze symptoms, and health care burden. Design, Setting, and Participants: The cohort for this diagnostic study included participants from the CHILD Study (n = 2511) from January 1, 2008, to December 31, 2012, the Raine Study from January 1, 1989, to December 31, 2012 (n = 2185), and the Canadian Asthma Primary Prevention Study (CAPPS) from January 1, 1989, to December 31, 1995 (n = 349), with active follow-up to date. Data analysis was performed from November 1, 2019, to May 31, 2022. Exposures: The CHILDhood Asthma Risk Tool (CHART) identified factors associated with asthma in patients at 3 years of age (timing and number of wheeze or cough episodes, use of asthma medications, and emergency department visits or hospitalizations for asthma or wheeze) to identify children with asthma or persistent symptoms at 5 years of age. Main Outcomes and Measures: Within the CHILD Study cohort, CHART was evaluated against specialist clinician diagnosis and the mAPI. External validation was performed in both a general population cohort (Raine Study [Australia]) and a high-risk cohort (CAPPS [Canada]). Predictive accuracy was measured by sensitivity, specificity, area under the receiver operating characteristic curve (AUROC), and positive and negative predicted values. Results: Among 2511 children (mean [SD] age at 3-year clinic visit, 3.08 [0.17] years; 1324 [52.7%] male; 1608 of 2476 [64.9%] White) with sufficient questionnaire data to apply CHART at 3 years of age, 2354 (93.7%) had available outcome data at 5 years of age. CHART applied in the CHILD Study at 3 years of age outperformed physician assessments and the mAPI in predicting persistent wheeze (AUROC, 0.94; 95% CI, 0.90-0.97), asthma diagnosis (AUROC, 0.73; 95% CI, 0.69-0.77), and health care use (emergency department visits or hospitalization for wheeze or asthma) (AUROC, 0.70; 95% CI, 0.61-0.78). CHART had a similar predictive performance for persistent wheeze in the Raine Study (N = 2185) in children at 5 years of age (AUROC, 0.82; 95% CI, 0.79-0.86) and CAPPS (N = 349) at 7 years of age (AUROC, 0.87; 95% CI, 0.80-0.94). Conclusions and Relevance: In this diagnostic study, CHART was able to identify children at high risk of asthma at as early as 3 years of age. CHART could be easily incorporated as a routine screening tool in primary care to identify children who need monitoring, timely symptom control, and introduction of preventive therapies.


Subject(s)
Asthma , Area Under Curve , Asthma/diagnosis , Asthma/drug therapy , Asthma/epidemiology , Canada , Child , Child, Preschool , Cough , Female , Humans , Male , Respiratory Sounds/diagnosis
11.
Reprod Biomed Online ; 45(6): 1255-1265, 2022 12.
Article in English | MEDLINE | ID: mdl-36182641

ABSTRACT

RESEARCH QUESTION: Are asthma and allergies more common in adolescents conceived with assisted reproductive technologies (ART) compared with adolescents conceived without? DESIGN: The Growing Up Healthy Study (GUHS) is a prospective cohort study including ART-conceived offspring born between 1991 and 2001 in Perth, Australia. Their long-term health outcomes, including asthma and allergy parameters, were compared with those of their counterparts conceived without ART from the Raine Study Generation 2 (Gen2), born in 1989-1991. At age 14, 152 GUHS and 1845 Gen2 participants completed the following assessments: the International Studies of Asthma and Allergies in Childhood (ISAAC) questionnaire, spirometry, methacholine challenge testing and skin prick testing (SPT). RESULTS: No differences were detected in the prevalence of current asthma (7.7% versus 10.8%, adjusted odds ratio [aOR] 0.82 (95% CI 0.44-1.52), P = 0.530). Spirometry-measured lung volumes were larger in the ART adolescents. Bronchial hyperresponsiveness was less prevalent in the ART cohort (8.8 versus 18.6%, P = 0.006). Current allergic rhinoconjunctivitis (ARC) rates were significantly higher in the ART cohort (32.4% versus 25.2%, aOR 1.52 [95% CI 1.03-2.26], P = 0.036), with no cohort differences in atopic dermatitis. Food allergies were more prevalent in the ART cohort (20.7 versus 10.9%, aOR 1.89 [95% CI 1.17-3.06], P = 0.010) with more adolescents having a positive SPT (68.0% versus 45.4%, aOR 3.03 [95% 1.99-4.63], P < 0.001). CONCLUSIONS: This study reports no differences in asthma prevalence, slightly altered lung function, an increase in ARC, food allergies and positive SPT in the ART-conceived adolescents. These findings are important to families and healthcare providers and may open up possibilities for targeted screening and treatment. Further studies are required to confirm these findings.


Subject(s)
Asthma , Food Hypersensitivity , Adolescent , Humans , Adult , Prospective Studies , Asthma/epidemiology , Asthma/diagnosis , Food Hypersensitivity/epidemiology , Cohort Studies , Reproductive Techniques, Assisted
13.
J Cyst Fibros ; 21(6): 1020-1026, 2022 11.
Article in English | MEDLINE | ID: mdl-35523715

ABSTRACT

BACKGROUND: Infants with cystic fibrosis (CF) develop structural lung disease early in life, and viral infections are associated with progressive lung disease. We hypothesized that the presence of respiratory viruses would be associated with structural lung disease on computed tomography (CT) of the chest in infants with CF. METHODS: Infants with CF were enrolled before 4 months of age. Multiplex PCR assays were performed on nasal swabs to detect respiratory viruses during routine visits and when symptomatic. Participants underwent CT imaging at approximately 12 months of age. Associations between Perth-Rotterdam Annotated Grid Morphometric Analysis for CF (PRAGMA-CF) CT scores and respiratory viruses and symptoms were assessed with Spearman correlation coefficients. RESULTS: Sixty infants were included for analysis. Human rhinovirus was the most common virus detected, on 28% of tested nasal swabs and in 85% of participants. The median (IQR) extent of lung fields that was healthy based on PRAGMA-CF was 98.7 (0.8)%. There were no associations between PRAGMA-CF and age at first virus, or detection of any virus, including rhinovirus, respiratory syncytial virus, or parainfluenza. The extent of airway wall thickening was associated with ever having wheezed (ρ = 0.31, p = 0.02) and number of encounters with cough (ρ = 0.25, p = 0.0495). CONCLUSIONS: Infants with CF had minimal structural lung disease. We did not find an association between respiratory viruses and CT abnormalities. Wheezing and frequency of cough were associated with early structural changes.


Subject(s)
Cystic Fibrosis , Respiratory Tract Infections , Virus Diseases , Viruses , Infant , Humans , Cystic Fibrosis/complications , Cystic Fibrosis/diagnosis , Cystic Fibrosis/epidemiology , Cough/complications , Lung , Virus Diseases/complications , Virus Diseases/diagnosis , Virus Diseases/epidemiology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/etiology
14.
ERJ Open Res ; 8(1)2022 Jan.
Article in English | MEDLINE | ID: mdl-35350282

ABSTRACT

Background: There is growing evidence that lung function in early-life predicts later lung function. Adverse events over the lifespan might influence an individual's lung function trajectory, resulting in poor respiratory health. The aim of this study is to identify early-life risk factors and their impact on lung function trajectories to prevent long-term lung impairments. Methods: Our study included participants from the Raine Study, a prospective pregnancy cohort, with at least two spirometry measurements. Lung function trajectories from the 6- to 22-year follow-ups were characterised using finite mixture modelling. Multinomial logistic regression analyses were used to evaluate the association between early-life predictors and lung function trajectories. Main results: A total of 1512 participants (768 males, 744 females), representing 53% of the whole cohort, were included in this analysis. Four lung function trajectories of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC (z-scores) were identified. FEV1 and FVC trajectories were categorised as: "very low", "low", "average" and "above average", respectively. Based on their shape, lung function trajectories of FEV1/FVC were categorised as "very low", "low-average", "average-low" and "average". Asthma and maternal smoking were identified as risk factors for low lung function trajectories in this cohort, as well as early-life exposure to PM2.5Absorbance. Conclusions: Early-life risk factors may influence lung function trajectories over time. Nonetheless, identifying children with a high risk of having low lung function trajectories should be prioritised to prevent deficits in later life.

15.
Eur Respir Rev ; 31(163)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35140105

ABSTRACT

Recently, "Technical standards for respiratory oscillometry" was published, which reviewed the physiological basis of oscillometric measures and detailed the technical factors related to equipment and test performance, quality assurance and reporting of results. Here we present a review of the clinical significance and applications of oscillometry. We briefly review the physiological principles of oscillometry and the basics of oscillometry interpretation, and then describe what is currently known about oscillometry in its role as a sensitive measure of airway resistance, bronchodilator responsiveness and bronchial challenge testing, and response to medical therapy, particularly in asthma and COPD. The technique may have unique advantages in situations where spirometry and other lung function tests are not suitable, such as in infants, neuromuscular disease, sleep apnoea and critical care. Other potential applications include detection of bronchiolitis obliterans, vocal cord dysfunction and the effects of environmental exposures. However, despite great promise as a useful clinical tool, we identify a number of areas in which more evidence of clinical utility is needed before oscillometry becomes routinely used for diagnosing or monitoring respiratory disease.


Subject(s)
Airway Resistance , Asthma , Humans , Oscillometry , Respiratory Function Tests , Spirometry
16.
Chest ; 161(1): 288-297, 2022 01.
Article in English | MEDLINE | ID: mdl-34437887

ABSTRACT

The practice of using race or ethnicity in medicine to explain differences between individuals is being called into question because it may contribute to biased medical care and research that perpetuates health disparities and structural racism. A commonly cited example is the use of race or ethnicity in the interpretation of pulmonary function test (PFT) results, yet the perspectives of practicing pulmonologists and physiologists are missing from this discussion. This discussion has global relevance for increasingly multicultural communities in which the range of values that represent normal lung function is uncertain. We review the underlying sources of differences in lung function, including those that may be captured by race or ethnicity, and demonstrate how the current practice of PFT measurement and interpretation is imperfect in its ability to describe accurately the relationship between function and health outcomes. We summarize the arguments against using race-specific equations as well as address concerns about removing race from the interpretation of PFT results. Further, we outline knowledge gaps and critical questions that need to be answered to change the current approach of including race or ethnicity in PFT results interpretation thoughtfully. Finally, we propose changes in interpretation strategies and future research to reduce health disparities.


Subject(s)
Ethnicity , Health Status Disparities , Lung Diseases/physiopathology , Lung , Racial Groups , Respiratory Function Tests , Asian People , Black People , Humans , Lung Diseases/ethnology , Reference Values , Spirometry , White People
17.
Paediatr Respir Rev ; 41: 51-60, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34210588

ABSTRACT

Asthma is the most common chronic lung disease in childhood. There has been a significant worldwide effort to develop tools/methods to identify children's risk for asthma as early as possible for preventative and early management strategies. Unfortunately, most childhood asthma prediction tools using conventional statistical models have modest accuracy, sensitivity, and positive predictive value. Machine learning is an approach that may improve on conventional models by finding patterns and trends from large and complex datasets. Thus far, few studies have utilized machine learning to predict asthma in children. This review aims to critically assess these studies, describe their limitations, and discuss future directions to move from proof-of-concept to clinical application.


Subject(s)
Asthma , Machine Learning , Asthma/diagnosis , Asthma/epidemiology , Child , Humans
19.
Eur Respir J ; 60(1)2022 07.
Article in English | MEDLINE | ID: mdl-34949706

ABSTRACT

BACKGROUND: Appropriate interpretation of pulmonary function tests (PFTs) involves the classification of observed values as within/outside the normal range based on a reference population of healthy individuals, integrating knowledge of physiological determinants of test results into functional classifications and integrating patterns with other clinical data to estimate prognosis. In 2005, the American Thoracic Society (ATS) and European Respiratory Society (ERS) jointly adopted technical standards for the interpretation of PFTs. We aimed to update the 2005 recommendations and incorporate evidence from recent literature to establish new standards for PFT interpretation. METHODS: This technical standards document was developed by an international joint Task Force, appointed by the ERS/ATS with multidisciplinary expertise in conducting and interpreting PFTs and developing international standards. A comprehensive literature review was conducted and published evidence was reviewed. RESULTS: Recommendations for the choice of reference equations and limits of normal of the healthy population to identify individuals with unusually low or high results are discussed. Interpretation strategies for bronchodilator responsiveness testing, limits of natural changes over time and severity are also updated. Interpretation of measurements made by spirometry, lung volumes and gas transfer are described as they relate to underlying pathophysiology with updated classification protocols of common impairments. CONCLUSIONS: Interpretation of PFTs must be complemented with clinical expertise and consideration of the inherent biological variability of the test and the uncertainty of the test result to ensure appropriate interpretation of an individual's lung function measurements.


Subject(s)
Bronchodilator Agents , Respiratory System , Humans , Lung Volume Measurements , Respiratory Function Tests , Spirometry , United States
20.
J Cyst Fibros ; 21(3): e188-e203, 2022 05.
Article in English | MEDLINE | ID: mdl-34801433

ABSTRACT

BACKGROUND: There is no data exclusively on the relationship between health-related quality-of-life (HRQOL) and lung disease severity in early school-aged children with cystic fibrosis (CF). Using data from the Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) we assessed the relationships between HRQOL, lung function and structure. METHODS: 125 children aged 6.5-10 years enrolled in the AREST CF program were included from CF clinics at Royal Children's Hospital (RCH), Melbourne (n = 66) and Perth Children's Hospital (PCH), Perth (n = 59), Australia. Demographics, HRQOL measured by Cystic Fibrosis Questionnaire-Revised (CFQ-R), spirometry, multiple-breath washout (MBW) and chest CT were collected across two years. Correlation between CFQ-R scores and lung structure/function parameters and agreement between parent-proxy and child-reported HRQOL were evaluated. RESULTS: No correlation was observed between most CFQ-R domain scores and FEV1 z-scores, excepting weak-positive correlation with parent CFQ-R Physical (rho = 0.21, CI 0.02-0.37), and Weight (rho = 0.21, CI 0.03-0.38) domain and child Body domain (rho = 0.26, CI 0.00-0.48). No correlation between most CFQ-R domain scores and LCI values was noted excepting weak-negative correlation with parent Respiratory (rho = -0.23, CI -0.41--0.05), Emotional (rho = -0.24, CI -0.43--0.04), and Physical (-0.21, CI -0.39--0.02) domains. Furthermore, structural lung disease on CT data demonstrated little to no association with CFQ-R parent and child domain scores. Additionally, no agreement between child self-report and parent-proxy CFQ-R scores was observed across the majority of domains and visits. CONCLUSION: HRQOL correlated poorly with lung function and structure in early school-aged children with CF, hence clinical trials should consider these outcomes independently when determining study end-points.


Subject(s)
Cystic Fibrosis , Quality of Life , Australia/epidemiology , Child , Health Status , Humans , Lung/diagnostic imaging , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...